Effects of heparin-mediated extracorporeal low-density lipoprotein precipitation beyond lowering proatherogenic lipoproteins—reduction of circulating proinflammatory and procoagulatory markers

Ying Wang a, Frithjof Blessing a, Autar K. Walli a,*, Peter Überfuhr b, Peter Fraunberger a, Dietrich Seidel a

a Institute of Clinical Chemistry, University Hospital Großhadern, Marchioninistrasse 15, 81377 Munich, Germany
b Department of Cardiac Surgery, University Hospital Großhadern, Marchioninistrasse 15, 81377 Munich, Germany

Received 9 October 2003; received in revised form 1 March 2004; accepted 17 March 2004

Available online 18 May 2004

Abstract

In addition to hypercholesterolemia, proinflammatory and prothrombotic markers have been suggested to play an important role in atherogenesis. We examined whether heparin-mediated extracorporeal low-density lipoprotein precipitation (HELP) therapy modulates the circulating levels of proinflammatory and prothrombotic markers. Twenty-two coronary heart disease (CHD) patients undergoing regular HELP-apheresis (18 males, 4 females, mean age 57.3 ± 10.9 years) were enrolled in this study. A single HELP therapy treatment significantly decreased the circulating levels of high sensitivity C-reactive protein (hs-CRP), soluble vascular adhesion molecule-1 (sVCAM-1), soluble E-selectin, lipopolysaccharide binding protein (LBP), endothelin-1 (ET-1), and monocyte chemoattractant protein-1 (MCP-1) on average by 67, 37, 24, 27, 24, and 15%, respectively. Prothrombotic factors including fibrinogen, tissue factor (TF), soluble CD40 ligand (sCD40L), and homocysteine were decreased by 66, 27, 16, and 22%, respectively. In accordance with previous studies HELP therapy reduced total cholesterol, low density lipoprotein (LDL) cholesterol, and Lp(a) mass by 50, 61, and 62%, respectively. Our data suggest that simultaneous reduction of proinflammatory and prothrombotic factors together with atherogenic lipoproteins by HELP-apheresis may contribute to improvement of endothelial dysfunction and thereby inhibit progression of atherosclerotic lesions and stabilize the existing plaque.

© 2004 Elsevier Ireland Ltd. All rights reserved.

Keywords: HELP, Atherosclerosis, Adhesion molecules, Monocyte chemoattractant protein-1, Tissue factor, Soluble CD40 ligand, Lipopolysaccharide binding protein, Endothelin-1

I. Introduction

Various factors are involved in inflammatory and coagulatory processes during atherosclerosis. It is now widely accepted that endothelium plays a central role in regulation of vascular tone, modification of lipoproteins, inflammation, thrombogenesis and transformation of circulating monocytes into foam cells [1]. Injured endothelium expresses adhesion molecules (AMs), which mediate adhesion of leukocytes to endothelial cells and initiate the onset of atherogenesis [2]. Release of chemokines such as monocyte chemoattractant protein-1 (MCP-1) facilitates monocytes to penetrate into intima. Activated T-lymphocytes and macrophages interact with vascular cells in injured intima and secrete cytokines and growth factors which promote proliferation of smooth muscle cells [3]. Recently CD40 ligand (CD40L) has been suggested to play a crucial role in coronary heart disease (CHD). Both membrane bound and soluble forms of this ligand interact with CD40 resulting in an inflammatory response [4,5]. Elevated soluble CD40L (sCD40L) levels have been reported in patients with unstable angina, hypercholesterolemia and restenosis after angioplasty [6–8]. CD40L stimulates macrophages which express procoagulatory tissue factor (TF). During plaque ruptures TF triggers
Thrombus formation which results in acute complication of atherosclerotic [9]. Endothelin-1, the most potent vasoconstrictor, may further stimulate the release of cytokines and chemokines [10]. Several studies have demonstrated an association between a variety of chronic bacterial infections and atherosclerotic cardiovascular disease [11,12]. Lipopolysaccharide binding protein (LBP) is secreted by liver during inflammation and endotoxemia. LPS-LBP complex after recognition by CD14+ cells activates intracellular signaling of genes for proinflammatory cytokines and chemokines [11]. This may further promote the atherosclerotic process.

HELP-apheresis efficiently removes LDL, Lp(a) and fibrinogen in patients with familial hypercholesterolemia (FH), CHD, cardiac bypass surgery patients, heart transplantation (HTX), cerebral infarction, myocardial ischemia and patients with sudden hearing loss [14–17]. Recent studies also report reduction of circulating levels in AMs [18,19] and patients with familial hypercholesterolemia (FH), advanced CHD, cardiac bypass surgery, heart transplantation and peripheral occlusive vascular disease were included in this study (Table 1). They were treated with regular HELP-apheresis at weekly intervals for a period of over 6 months. Exclusion criteria were impaired renal function, diabetes mellitus, cardiovascular events within the last 3 months and clinical signs of infectious disease. This study was approved by the ethics committee of University of Munich and informed consent was obtained from each patient.

Venous blood samples for obtaining serum and plasma were centrifuged at 1000 × g and 4 °C for 15 min. Lipids and fibrinogen were measured immediately after sampling. Plasma and serum samples for measurement of other parameters were aliquoted and stored at −80 °C until use.

2.2. HELP-apheresis

The procedure for HELP therapy has been described previously [14]. In brief, venous blood was drawn from cubital vein catheter and blood cells were separated from plasma which was mixed with acetaheparin buffer (pH 4.85) (1:1 v/v ratio) to precipitate fibrinogen, LDL and Lp(a). Excess of heparin was removed by anion-exchange filter. Physiological pH was restored by bicarbonate dialysis and extra fluid was removed by ultrafiltration. Plasma was then mixed with cell-rich blood fraction and returned back to the patient. The average plasma volume treated was 3300 ml per session.

2.3. Laboratory parameters

Concentrations in serum of total, VLDL, LDL, and HDL-cholesterol, Lp(a) mass, apo AI, apo B, triglycerides, and plasma fibrinogen were measured by standard routine methods on Automatic Analyzer (Hitachi 911 and STA-R, Roche, Germany). Quantitative measurement of sVCAM-1, sICAM-1, sE-selectin, endothelin-1, MCP-1, and sCD40L in serum was performed by solid phase sandwich enzyme-linked immunosorbent assay (ELISA) from R&D systems (Minneapolis, USA) according to the manufacturer’s protocol and limits of detection were less than 2.0, 0.35, 0.1, 1.0, 5.0 ng/ml, and 10 pg/ml, respectively. Tissue factor was measured in sodium citrate plasma by IMUBIND ELISA kit (Loxo GmbH, Dossenheim, Germany) with a detection limit of 0.2 μg/ml. Homocysteine levels in plasma were measured by fluorescence polarization immunosassay (FP I) [IMMULITE® 2, DPC, USA] with a detection limit of <0.5 μmol/l. hs-CRP was measured by immunoturbidimetry (COBAS INTEGRA, Roche, Germany) with a detection limit of 8.5 μg/dl.

2.4. Statistical analysis

The results are given as mean values and standard deviations. Differences between pre- and post-apheresis values are given as percentage. Data were analyzed using SPSS software (Version 11.5, SPSS Inc., Chicago, IL). Statistical significance of the data was evaluated by paired samples t test. Correlation coefficients were obtained by Pearson analysis. For all analyses, P < 0.05 was considered signif-
Table 2: Reduction in circulating lipids and lipoproteins by a single HELP-apheresis

<table>
<thead>
<tr>
<th>Lipid profile (mg/dl)</th>
<th>Pre-HELP</th>
<th>Post-HELP</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>216.1 ± 38.1</td>
<td>107.0 ± 20.4</td>
<td>50.3</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>232.7 ± 178.8</td>
<td>111.0 ± 100.4</td>
<td>53.3</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>128.6 ± 29.9</td>
<td>49.8 ± 17.1</td>
<td>61.4</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>47.6 ± 14.4</td>
<td>37.8 ± 8.6</td>
<td>17.0</td>
</tr>
<tr>
<td>VLDL-cholesterol</td>
<td>36.8 ± 33.1</td>
<td>17.3 ± 11.3</td>
<td>53.3</td>
</tr>
<tr>
<td>Apo A-I</td>
<td>150.8 ± 27.3</td>
<td>119.2 ± 26.0</td>
<td>21.5</td>
</tr>
<tr>
<td>Apo B</td>
<td>109.2 ± 23.6</td>
<td>42.1 ± 12.3</td>
<td>61.8</td>
</tr>
<tr>
<td>Lipoprotein(a)</td>
<td>91.3 ± 48.2</td>
<td>32.5 ± 18.0</td>
<td>61.7</td>
</tr>
</tbody>
</table>

Reductions were statistically significant (P < 0.001).

Table 3: Modulation of circulating proinflammatory markers by a single HELP-apheresis

<table>
<thead>
<tr>
<th>Proinflammatory parameters</th>
<th>Pre-HELP</th>
<th>Post-HELP</th>
<th>Reduction (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sVCAM-1 (ng/ml)</td>
<td>64/8 ± 185.8</td>
<td>42.5 ± 151.5</td>
<td>37.0</td>
<td><0.001</td>
</tr>
<tr>
<td>sICAM-1 (ng/ml)</td>
<td>148.1 ± 37.5</td>
<td>153.9 ± 40.9</td>
<td>4.0</td>
<td>NS</td>
</tr>
<tr>
<td>sE-selectin (ng/ml)</td>
<td>31.1 ± 11.0</td>
<td>24.0 ± 9.8</td>
<td>23.6</td>
<td><0.001</td>
</tr>
<tr>
<td>MCP-1 (ng/ml)</td>
<td>409.9 ± 124.2</td>
<td>340.9 ± 110.0</td>
<td>15.0</td>
<td><0.001</td>
</tr>
<tr>
<td>ET-1 (pg/ml)</td>
<td>1.8 ± 0.3</td>
<td>1.3 ± 0.3</td>
<td>24.4</td>
<td><0.001</td>
</tr>
<tr>
<td>LBP (ng/ml)</td>
<td>7.1 ± 3.8</td>
<td>6.7 ± 2.1</td>
<td>26.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Hs-CRP (mg/dl)</td>
<td>0.5 ± 1.24</td>
<td>0.17 ± 0.4</td>
<td>66.9</td>
<td><0.001</td>
</tr>
</tbody>
</table>

NS: not significant.

Table 4: Reduction in procoagulatory factors by a single HELP-apheresis

<table>
<thead>
<tr>
<th>Procoagulatory parameters</th>
<th>Pre-HELP</th>
<th>Post-HELP</th>
<th>Reduction (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue factor (pg/ml)</td>
<td>208.0 ± 118.4</td>
<td>211.4 ± 113.8</td>
<td>26.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Fibrinogen (mg/dl)</td>
<td>339.3 ± 83.0</td>
<td>115.8 ± 43.7</td>
<td>66.1</td>
<td><0.001</td>
</tr>
<tr>
<td>sCD40L (ng/ml)</td>
<td>5.25 ± 2.60</td>
<td>3.79 ± 2.39</td>
<td>16.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Homocysteine (µmol/l)</td>
<td>12.3 ± 4.4</td>
<td>9.6 ± 3.3</td>
<td>21.6</td>
<td><0.001</td>
</tr>
</tbody>
</table>

3. Results

A single HELP therapy treatment reduced circulating levels of total cholesterol, LDL-C, VLDL-C, Lp(a), triglycerides, apo B and apo A-I by 50%, 61%, 39%, 62%, 53%, 62%, and 21%, respectively (P < 0.001). A small but significant reduction in HDL-C was also noted (Table 2). These observations are in accordance with previous studies [14,15].

Next we examined the effects of HELP therapy on proinflammatory markers. A reduction in circulating levels of sVCAM-1, sE-selectin, and hs-CRP by 37%, 24%, and 67%, respectively, was noted (P < 0.001). No significant reduction in sICAM-1 levels was observed. HELP therapy reduced the circulating levels of MCP-1, ET-1, and LBP by 15%, 24%, and 27%, respectively (P < 0.01, Table 3). These reductions are independent of pre-apheresis levels.

HELP therapy drastically reduces circulating levels of fibrinogen and improves blood viscosity [22]. It has also a potential for lowering levels of coagulatory factors [23]. We therefore examined if HELP therapy would modulate concentrations of TF, CD40L and homocysteine which play a vital role in thrombotic events. Circulating levels of fibrinogen, TF, CD40L and homocysteine were reduced by 66, 27, 16, and 22%, respectively, respectively (Table 4). The effects of HELP therapy on sCD40L differ from those observed on other markers measured in this study. In some patients no reduction but an increase in sCD40L was noted (n = 7). We therefore divided patients into three groups according to their pre-apheresis sCD40L concentrations to examine whether initial levels correlate with the reduction by HELP therapy (group 1: >7.0 ng/ml, group 2: 4.0–7.0 ng/ml, and group 3: 1.0–4.0 ng/ml). HELP therapy reduced sCD40L in groups 1 and 2 by 35 and 30%, respectively (P < 0.05). However, an increase which was not significant was noted in group 3 (ca. 21%) (Fig. 1).

No correlation between pre-HELP LDL levels and proinflammatory markers was observed (data not shown). However pre-apheresis levels of fibrinogen showed a significant correlation with TF, sVCAM-1, and LBP (Fig. 2a–c) (r = 0.477, 0.423, 0.427, respectively, P < 0.05).
4. Discussion

Important steps in initiation and progression of atherosclerosis include accumulation of inflammatory cells within the intima, secretion of growth factors and transformation of lipid-loaded foam cells [3]. Adhesion molecules E-selectin, VCAM-1 and ICAM-1 play a major role in leukocyte adhesion to endothelium, which is detectable early in human and experimental plaque formation [2]. Soluble forms of AMs, CD40L and TF arise from proteolytic cleavage from cell membranes [6,24,25]. Expression of VCAM-1 was shown to be higher in human aorta with atheromatous changes and to correlate with soluble VCAM-1. It has also been reported that circulating levels of VCAM-1, but not ICAM-1, correlate with angiographically determined atherosclerotic area [26]. Reduction of both sVCAM-1 and sE-selectin by HELP-apheresis observed in this study may be beneficial for endothelium. In contrast to earlier reports [18,19], no reduction of sICAM-1 levels was noted. The removal of AMs by apheresis has been suggested to be dependent on molecular weight, being highest for P-selectin and lowest for ICAM-1 [19,27].

Atherosclerotic lesions accumulate inflammatory cells expressing CD40L, which is a transmembrane protein belonging to the TNF superfamily. Its receptor CD40, which belongs to the TNF receptor family, is expressed on B cells, monocytes, macrophages, dendritic cells and endothelial cells [4,5]. Ligation of CD40L with CD40 on monocytes/macrophages induces the synthesis of AMs, proinflammatory cytokines, chemokines (MCP-1) and TF. Tissue factor initiates the extrinsic coagulation cascade and is implicated in atherosclerotic plaque rupture [28]. In the present study HELP therapy reduced the levels of TF, MCP-1, and sCD40L, which may reduce the risk of thrombotic events in atherosclerosis.

Endothelin-1 stimulates synthesis and release of cytokines and growth factors in experimental animal models and in vivo studies [10]. Thus, elimination of ET-1 reported in the present study by HELP-apheresis should not only decrease the direct vasoconstrictive injury to lesioned endothelium, but also attenuate the proinflammatory response in the atherosclerotic process.

Acute phase proteins, such as fibrinogen, CRP and LBP, are secreted by liver in response to inflammatory processes. Both fibrinogen and CRP are independent risk factors in CHD [29,30]. Fibrinogen, a central factor in thrombotic events, alters serum viscosity, platelet aggregation and thus hemorheology [22]. Recently, fibrinogen has been reported to stimulate chemokine (MCP-1) secretion in macrophages,
synovial fibroblasts and endothelial cells. It also alters morphol-
ogy and proliferation of vascular endothelial cells [31]. Thus simultaneous removal of fibrinogen, TF, CRP and CD40L should benefit in CHD patients.

LBP complexes with endotoxin (LPS) and this complex activates CD4+ T cells and inducens proinflammatory responses. Reduction of LBP by HELP therapy should diminish the LPS-mediated inflammatory response and de-
serves attention. Homocysteine is also an independent risk factor for CHD [32]. It has been reported that hyperhomocys-
teinemia stimulates the expression of MCP-1, VCAM-1, and E-selectin in vivo [33]. Thus reduction of homocysteine levels by HELP-apheresis shown in this study may reduce endothelial activation.

Various therapeutic approaches such as administration of antibodies and drugs have been tried to lower concen-
trations of CD40, CD40L, homocysteine, and TF [34–36]. Such treatments may partially improve the chronic and acute inflammatory situation. However, atherosclerosis is a complex process involving lipoproteins, proinflammatory and prothrombotic events. Our study stresses the role of fibrinogen as a major factor. Indeed circulating levels of fib-
inogen correlate with pre-apheresis levels of TF, VCAM-1 and LBP. Thus, simultaneous reduction in proatherogenic lipoproteins, fibrinogen, TF, CD40L, VCAM-1 and LBP should prove beneficial in arresting the progression of atherosclerosis and probably induce regression of existing atherosclerotic plaque. However, further studies are needed to establish long term beneficial effects of maintaining consist-
ently lower levels of proatherogenic, prothrombotic and proinflammatory factors in CHD patients.

Acknowledgements

We thank the Deutsche Gesellschaft für Klinische Chemie for providing a stipendium to Dr. Ying Wang during this study.

References

[3] Kowala MC. The role of endotoxin in the pathogenesis of atheroscle-
[5] Seifert D, Armstrong VW, Schuff-Werner P. For the HELP Study Group. The HELP-LDL-apheresis multicenter study, an angiograph-
7.
[10] Seifert D, Armstrong VW, Schuff-Werner P. For the HELP Study Group. The HELP-LDL-apheresis multicenter study, an angiograph-
7.
[14] Polanski E, Melinov KP, Brinkmann T, Kleeck K, Horstwitzte D. Influence of single low-density lipoprotein apheresis on the adhe-
sion molecules soluble vascular cellular adhesion molecule-1, sol-
[16] Wieland E, Schöffl V, Armstrong VW. Highly effective reduc-
ology associated with a reduction in plasma fibrinogen and LDL in patients being treated by heparin-induced extracorporeal LDL pre-
[18] Jaeger BR, Goehring P, Schirmer J, et al. Consistent lowering of plasma fibrinogen by HELP-apheresis shown in this study may reduce endothelial activation.

We thank the Deutsche Gesellschaft für Klinische Chemie for providing a stipendium to Dr. Ying Wang during this study.

References

7.
ology associated with a reduction in plasma fibrinogen and LDL in patients being treated by heparin-induced extracorporeal LDL pre-

