NUCLEOSOMES IN SERUM OF PATIENTS WITH BENIGN AND MALIGNANT DISEASES

Stefan HOLDENREID1, Petra STIEBER1*, Heinz BODENMÜLLER2, Martin BUSCH3, Georg FERTIG4, Andreas SCHALHORN5, Nikolaus SCHMELLER6, Michael UNTCH7 and Dietrich SEIDEL1

1Institute of Clinical Chemistry, Klinikum der Universität München-Grosshadern, Munich, Germany
2Roche Diagnostics, Penzberg, Germany
3Department of Radiotherapy and Radiooncology, Klinikum der Universität München-Grosshadern, Munich, Germany
4Department of Surgery, Klinikum der Universität München-Grosshadern, Munich, Germany
5Department of Internal Medicine III, Klinikum der Universität München-Grosshadern, Munich, Germany
6Department of Urology, Landeskranenanstalten Salzburg, Salzburg, Austria
7Department of Gynecology, Klinikum der Universität München-Grosshadern, Munich, Germany

High quantities of mono- and oligonucleosomes circulate in the blood of patients with malignant tumors. For their direct quantification in serum, we modified the Cell Death Detection™-ELISA for its application in liquid materials. We examined sera samples from 590 persons, including 418 patients with malignant tumors, 109 patients with benign diseases and 63 healthy persons. We also observed the kinetics of the concentration of nucleosomes in serum samples from 20 patients undergoing chemotherapy and from 16 patients undergoing radiotherapy. Sera of patients with malignant tumors contained considerably higher concentrations of nucleosomes (mean = 350 arbitrary units [AU], median = 190 AU) compared with those of healthy persons (mean = 36 AU, median = 24 AU; p = 0.0001) and patients with benign decrease (mean = 264 AU, median = 146 AU; p = 0.0072). Concerning the follow-up investigations, the concentration of nucleosomes in serum increased 24–72 hr after the first application of chemotherapy and 6–24 hr after the start of radiotherapy. A subsequent decrease was often correlated with regression of the tumor. In patients undergoing chemotherapy, an increase in the baseline values of circulating nucleosomes >50%, which were determined before each new therapeutic cycle, was correlated with progression of disease; all patients with disease regression showed a decrease >50% of the baseline values. In patients undergoing radiotherapy, an early decrease of the nucleosomal concentration (≤1 day after the initial peak during therapy) to low minimum levels (≤100 AU) correlated with good clinical outcome; a late decrease (>1 day) to higher minimum levels (>100 AU) was associated with a worse clinical outcome. Thus, the concentration of nucleosomes in serum might be a useful tool for monitoring the biochemical response during antitumor therapy, especially for the early estimation of therapeutic efficacy.

It is well known that high levels of free DNA circulate in patients with various malignant tumors11–16 and in patients with systemic lupus erythematosus (SLE). Most of the DNA in the serum and plasma exist in the form of oligonucleosomes and mononucleosomes.19–22 We modified a test system that was originally created for cytoplasmic detection of nucleosomes (the Cell Death Detection™-ELISA; Roche Diagnostics, Penzberg, Germany) in order to directly quantify nucleosomes in liquid materials, particularly in serum.22

Many tests have been developed to quantify the rate of proliferation or cell death for estimation of tumor activity.23,24 Most of them require tumor tissue as matrix, are invasive and might only yield information about the time of first diagnosis. If the concentration of nucleosomes in the serum reflects tumor activity or correlates with the death of tumor cells, their quantification via the Cell Death Detection™-ELISA would be an almost non-invasive and easy-to-perform method. It could be applied in daily routine and would be suited particularly for kinetic measurements in patients during or after antitumor therapy.

As nucleosomes are released from cells immediately after disintegration of the plasma membrane25,26 and as their half life in serum is short,21,27 the concentration of nucleosomes in serum might reveal a snapshot of the rate of cell death at a defined time. Thus, the spontaneous rate of cell death in sera of patients before therapy as well as the induced rate of cell death during and after therapy might contain important information about tumor activity and its sensitivity to therapy.

MATERIAL AND METHODS

The Cell Death Detection™-ELISA is based on a quantitative sandwich ELISA principle. Mouse MAbs directed against DNA (single-strand [ss] and double-strand [ds] DNA) and histones (H1, H2a, H2b, H3 and H4) from mouse clones M-CA-33 and H11-4, respectively, detect specifically mononucleosomes and oligonucleosomes deriving from eukaryotic cells.

Whereas the anti-histone antibodies are biotinylated and fix the complexes to the microtiter plate, the anti-DNA antibodies are associated with a peroxidase label that reacts with the substrate ABTS (2,2’-Azino-di (3-ethylbenzthiazolin-sulfonat)). The resulting color development, which is proportional to the amount of nucleosomes captured in the antibody sandwich, is measured pho-
tometrically at 405 nm. Whereas determination of the electrophoretic DNA ladder requires the content of at least 10^6 cells, the Cell Death Detection *plus*-ELISA already allows detection of 10^3 cells.

In order to enable direct quantification of the nucleosomes and to improve the intraassay and interassay comparability of the ELISA system, we established reference material according to the following procedure. From 3 healthy donors, equal volumes of EDTA-stabilized whole blood samples were mixed and incubated for 3 days at 37°C (5% CO$_2$). After centrifugation, the supernatant, which contained high concentrations of nucleosomes, was used to produce the standards. In the ELISA, the material was diluted with incubation buffer [IP] (1:24, 1:32, 1:48, 1:64, and only IP), ensuring that the highest standard constantly reached values of about 2,500 arbitrary units (AU) after 30 min of ABTS color development.

As matrix, we used serum because of its better stability compared with plasma and the planned automatization of the test. The blood samples were centrifuged within 1–2 hr after blood was taken. Subsequently, we added 10 mM EDTA (pH 8) to stabilize the nucleosomes in the serum and stored the samples at -20°C. Under these conditions, the blood samples remained stable for at least 6 months. Immediately before measurement of the nucleosomes in the ELISA, the samples were homogenized and diluted 1:4 with incubation buffer.

Patients

We investigated serum samples from 590 persons, including 63 healthy persons, 109 patients with benign diseases and 418 patients with malignant tumors. Serum samples were obtained for all patients at time of acute disease and before start of the recommended therapy. Of the 109 patients with benign diseases, 38 suffered from benign gastrointestinal diseases (colitis, pancreatitis, cholecystitis, diverticulosis, subcutis and others), 13 from benign pulmonary diseases (emphysema, pneumonia a.o.), 37 from benign gynecological diseases (ovarian cysts, endometriosis, uterus myomatous a.o.) and 21 from other benign diseases (abscesses, nodular goiter, coronary heart disease). Among these 109 patients were 50 patients with acute inflammatory diseases. According to C-reactive protein (CRP), we classified these patients into 5 groups of 10 patients each: I: CRP ≤ 1 ng/ml; II: 1 ng/ml < CRP ≤ 5 ng/ml; III: 5 ng/ml < CRP ≤ 10 ng/ml; IV: 10 ng/ml < CRP ≤ 20 ng/ml; V: 20 ng/ml < CRP.

Of the 418 patients with malignant tumors, 60 suffered from lung cancer, 79 from colorectal cancer, 49 from other gastrointestinal cancers, 61 from breast cancer, 45 from ovarian cancer, 20 from other gynecological cancers, 40 from lymphoma, 20 from renal cancer, 17 from prostate cancer and 27 from other carcinoma.

Of these 418 cancer patients, we observed additionally the course of 16 patients (6 with lung cancer, 4 with head and neck cancer, 4 with lymphoma and 2 with colorectal cancer) during radiotherapy. We also observed 20 patients (8 with lymphoma, 6 with colorectal cancer, 2 with pancreatic cancer, 2 with sarcoma, 2 with lung cancer) during chemotherapy for a period of 1–12 months.

Radiotherapy was applied in daily fractions of 1.6–2.0 Gy, 5 days a week for 4–6 weeks according to the radiation regimen of the respective tumor diseases. Blood was taken before radiation and at 3 and 6 hr, 1 day (immediately before the second fraction was given), 4 and 7 days after initiation of therapy and additionally weekly before the first fraction of the week.

Chemotherapy was applied in cycles of 1–5 days according to the therapeutic regimen, followed by a therapy-free interval of 3–4 weeks. Blood was taken at the first, second and fourth day of each cycle immediately before chemotherapy was administered.

We correlated the pre-therapeutic nucleosomal level in the serum samples, the increase in values after initiation of therapy, the maximum value during therapy, the delay and completeness of decrease of the values, the minimum value between the cycles and the end of therapy, respectively, and the kinetics of the baseline values of circulating nucleosomes — which were determined before each new therapeutic cycle — with the clinical outcome.

RESULTS

Distribution of the values

Of the 63 healthy persons, 60 had very low concentrations of nucleosomes in serum below 100 AU. The median concentration was 24 AU and the mean concentration was 36 AU (Fig. 1, Table I). Age, sex and lifestyle (particularly smoking and drinking alcohol) did not cause any significant differences. We calculated the 95th percentile for healthy persons at 98 AU.

In the sera of patients with malignant tumors, we found nucleosomal levels that ranged from 1 to more than 1,500 AU. A median of 190 AU and a mean of 350 AU were markedly higher than levels found in the sera of healthy persons (Fig. 1, Table I). Among the various tumor types, sera of patients with lung cancer showed the highest values with a median of 417 AU and a mean of 569 AU. The sera of patients with prostate cancer had the lowest values with a median of 9 AU and a mean of only 31 AU. The sera of patients with other tumor entities showed intermediate values (Fig. 2, Table I).

We also observed a wide range (from 1 to more than 1,000 AU) of the measured values in the sera of patients with benign diseases. The median of 146 AU (mean 264 AU) was considerably lower than that found in the sera of tumor patients (Fig. 1, Table I). Among these patients, those with acute inflammations showed a clear correlation between the level of CRP and circulating nucleosomes (Fig. 3).

The discrimination between healthy persons and patients with malignant diseases as well as between healthy persons and patients with benign diseases was highly significant ($p < 0.0001$, Wilcoxon test). The difference between the groups of patients with benign and malignant diseases did not reach statistical significance ($p = 0.072$, Wilcoxon test; Fig. 1).

Follow-up

In the follow-up of patients with acute inflammations, we found a correlation among the concentration of nucleosomes, CRP and the clinical state of the patient. In acute stages of disease, we observed a high CRP and nucleosomal levels; during reconvalescence, both parameters declined simultaneously (Fig. 4).

During chemotherapy, most of the patients showed a rapid increase of the concentration of nucleosomes with a peak between 24–72 hr after initiation of therapy, followed by a slow decrease to almost normal values. The peak of the second cycle was generally lower than that found in the sera of tumor patients (Fig. 1, Table I). Among these patients, those with acute inflammations showed a clear correlation between the level of CRP and circulating nucleosomes (Fig. 3).

The discrimination between healthy persons and patients with malignant diseases as well as between healthy persons and patients with benign diseases was highly significant ($p = 0.0001$, Wilcoxon test). The difference between the groups of patients with benign and malignant diseases did not reach statistical significance ($p = 0.072$, Wilcoxon test; Fig. 1).
Infections and other side effects led to a temporary elevation of the nucleosomes in the serum (Figs. 5, 6). In patients undergoing radiotherapy, we observed an even quicker increase of the concentration of nucleosomes in the serum about 6–24 hr after initiation of therapy. In some of the patients, we found a temporary decline of the values after 3 or 6 hr followed by a rapid increase. During the course of therapy, the concentration of nucleosomes often decreased constantly, correlating with tumor regression. This was documented by imaging techniques (Figs. 7, 8).

Correlation to the clinical outcome

In chemotherapy patients, there was no correlation of pre-therapeutic values, increase rate and maximum values with the clinical outcome. The kinetics of the baseline values of circulating nucleosomes were determined before starting each new therapeutic cycle. These values correlated well with the clinical outcome. In all 8 patients with partial or complete remission of disease (UICC criteria), we observed a decrease of 50% of the baseline values. An increase of 50% (N = 6) was only seen in patients with disease progression (Table II).

During radiotherapy, we found a correlation between the pre-therapeutic concentration of nucleosomes and the maximum concentration of nucleosomes during therapy. The nucleosomal concentrations increased >50% during therapy in 9 of 11 patients with pre-therapeutic values higher than 100 AU. Increases more than 50% were observed in 5 patients, all of whom had pre-therapeutic values less than 100 AU. This means that moderate changes in absolute numbers could provoke considerable percentual increases. However, there was neither a correlation of the pre-therapeutic nucleosomal levels nor of the maximum values during therapy with the clinical outcome.

However, clinical outcome correlated with the start of decline of the maximum nucleosomal concentration and with the minimum

Table I – Distribution of the spontaneous concentrations of nucleosomes in serum before start of the therapy

<table>
<thead>
<tr>
<th>Number</th>
<th>Mean</th>
<th>Median</th>
<th>75%</th>
<th>95%</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy persons</td>
<td>63</td>
<td>36</td>
<td>24</td>
<td>50</td>
<td>98</td>
</tr>
<tr>
<td>Patients with malignant diseases</td>
<td>418</td>
<td>350</td>
<td>190</td>
<td>528</td>
<td>1,084</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>60</td>
<td>569</td>
<td>416</td>
<td>984</td>
<td>1,195</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>79</td>
<td>343</td>
<td>187</td>
<td>505</td>
<td>1,074</td>
</tr>
<tr>
<td>Other gastrointestinal cancers</td>
<td>49</td>
<td>334</td>
<td>175</td>
<td>550</td>
<td>1,051</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>61</td>
<td>330</td>
<td>185</td>
<td>432</td>
<td>1,032</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>45</td>
<td>391</td>
<td>216</td>
<td>670</td>
<td>1,086</td>
</tr>
<tr>
<td>Other gynecological cancers</td>
<td>20</td>
<td>347</td>
<td>232</td>
<td>477</td>
<td>1,264</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>40</td>
<td>324</td>
<td>136</td>
<td>572</td>
<td>1,012</td>
</tr>
<tr>
<td>Renal cancer</td>
<td>20</td>
<td>194</td>
<td>60</td>
<td>299</td>
<td>716</td>
</tr>
<tr>
<td>Prostatic cancer</td>
<td>17</td>
<td>31</td>
<td>9</td>
<td>44</td>
<td>110</td>
</tr>
<tr>
<td>Others</td>
<td>27</td>
<td>249</td>
<td>151</td>
<td>404</td>
<td>651</td>
</tr>
<tr>
<td>Patients with benign diseases</td>
<td>109</td>
<td>264</td>
<td>146</td>
<td>330</td>
<td>988</td>
</tr>
<tr>
<td>Benign pulmonary diseases</td>
<td>13</td>
<td>273</td>
<td>149</td>
<td>349</td>
<td>906</td>
</tr>
<tr>
<td>Benign gastrointestinal diseases</td>
<td>38</td>
<td>265</td>
<td>93</td>
<td>279</td>
<td>1,022</td>
</tr>
<tr>
<td>Benign gynecological diseases</td>
<td>37</td>
<td>244</td>
<td>177</td>
<td>336</td>
<td>806</td>
</tr>
<tr>
<td>Other benign diseases</td>
<td>21</td>
<td>293</td>
<td>139</td>
<td>291</td>
<td>960</td>
</tr>
<tr>
<td>Patients with benign pulmonary diseases</td>
<td>13</td>
<td>273</td>
<td>149</td>
<td>349</td>
<td>906</td>
</tr>
<tr>
<td>Benign gastrointestinal diseases</td>
<td>38</td>
<td>265</td>
<td>93</td>
<td>279</td>
<td>1,022</td>
</tr>
<tr>
<td>Benign gynecological diseases</td>
<td>37</td>
<td>244</td>
<td>177</td>
<td>336</td>
<td>806</td>
</tr>
<tr>
<td>Other benign diseases</td>
<td>21</td>
<td>293</td>
<td>139</td>
<td>291</td>
<td>960</td>
</tr>
</tbody>
</table>

Figure 2 – Distribution of the spontaneous concentration of nucleosomes in serum (AU) for patients with malignant tumor diseases: lung cancer (LC), colorectal cancer (CC), other gastrointestinal cancers (OGIC), breast cancer (BC), ovarian cancer (OC), other gynecological cancers (OGC), lymphoma (L), renal cancer (RC), prostatic cancer (PC) and other cancers (O).

Figure 3 – Mean, median, 25th percentile, 75th percentile and range of the concentration of nucleosomes in serum (AU) for patients with acute inflammations concerning the level of CRP: I: CRP ≤ 1 ng/ml; II: 1 ng/ml < CRP ≤ 5 ng/ml; III: 5 ng/ml < CRP ≤ 10 ng/ml; IV: 10 ng/ml < CRP ≤ 20 ng/ml; V: 20 ng/ml < CRP.

Figure 4 – Course of the concentration of nucleosomes in serum and CRP in a patient suffering from acute cholangitis with cholestasis. During antibiotic therapy (starting at day 1), the concentration of nucleosomes in the serum, CRP and other signs of inflammation normalized subsequently.

lower than that of the first one. Infections and other side effects led to a temporary elevation of the nucleosomes in the serum (Figs. 5, 6).

In patients undergoing radiotherapy, we observed an even quicker increase of the concentration of nucleosomes in the serum about 6–24 hr after initiation of therapy. In some of the patients,
concentration after therapy (Table III). In 9 of 10 patients, we observed a partial or complete remission of the tumor when the nucleosomal levels started to decrease within 3 days and declined gradually afterward. Subsequently, therapy was changed to folic acid 300 mg/m² bolus and 5-fluorouracil 500 mg/m²/hr (days 1 to 5) (2) because of disease progression. The concentration of the circulating nucleosomes peaked again but decreased only incompletely. In parallel with a further progression of the metastatic disease and a deterioration of the general condition, the spontaneous concentration of nucleosomes in serum increased again.

FIGURE 5 – Course during chemotherapy in a patient with pancreatic carcinoma T4 N1 M1, treated with gemcitabine 1,000 mg/m² (days 1, 8, 15) and cisplatin 50 mg/m² (days 1 and 15) (1). The concentration of nucleosomes in serum increased within 3 days and declined gradually afterward. Subsequently, therapy was changed to folic acid 300 mg/m² bolus and 5-fluorouracil 500 mg/m²/hr (days 1 to 5) (2) because of disease progression. The concentration of the circulating nucleosomes peaked again but decreased only incompletely. In parallel with a further progression of the metastatic disease and a deterioration of the general condition, the spontaneous concentration of nucleosomes in serum increased again.

DISCUSSION

Distribution of the values

As in many other studies, based on circulating DNA in plasma or serum, our results showed healthy persons as a homogeneous group with very low concentrations of nucleosomes in the serum (<100 AU). Patients with malignant tumors or benign diseases had nucleosomal concentrations that varied considerably. In serum samples from patients with malignant tumors, we detected high levels of nucleosomes. However, there were also patients with advanced tumor disease with very low levels of nucleosomes, overlapping with those of healthy persons. Many of the patients with benign diseases had only slightly elevated con-
centrations of nucleosomes, whereas we observed extremely high levels of more than 1,000 AU in other patients with benign disease. Although the discrimination between the groups of patients with malignant tumors and benign diseases almost reached the level of significance, the concentration of nucleosomes in serum cannot predict malignancy of diseases for a specific person, due to inflammatory processes. High CRP levels indicate that acute stages of inflammations delay the removal of nucleosomes from circulation by binding to the histone component.28 In patients with malignant tumors, the intratumor and intertumor heterogeneity of spontaneous and induced apoptosis is a well-known feature,29,30 which explains our findings of widely varying heterogeneity of spontaneous and induced apoptosis is a well-known feature,29,30 which explains our findings of widely varying

<table>
<thead>
<tr>
<th>Start of decrease of the concentration of nucleosomes in serum</th>
<th>Remission (N = 10)</th>
<th>No change (N = 1)</th>
<th>Progression (N = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>7 Days</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2–7 Days</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≤1 Days</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Minimum values of the concentration of nucleosomes in serum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100 AU</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>≤100 AU</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Correlations to the clinical outcome

In patients undergoing chemotherapy, the baseline values of the concentration of circulating nucleosomes, which were determined before each new cycle, corresponded to the spontaneous apoptotic rate of the remaining active tumor tissue. This explains the increase of the baseline values in 6 of 11 patients with disease progression and the decrease of the baseline values in all patients with disease regression. However, some patients had a decrease of their baseline values in spite of disease progression. This was possibly caused by mutations of cell death-regulating genes, such as p53 or bcl2, which made the tumor cells resistant to apoptosis and led to a higher aggressiveness of the cancer.59,60

During radiotherapy, the delay time of decline and the level of the minimum concentration of nucleosomes in serum are probably explained by the sensitivity to radiation. Most cells die directly after initiation of therapy because of the effective and extended damage of the DNA,57 which obviously leads to the early peak of circulating nucleosomes as observed in most of the irradiated patients. An early and rapid decline in the course of therapy correlated with disease regression, which was due to the effective elimination of radiosensitive tumor cells. Thus, a rapid decline to low minimum values indicates high radiosensitivity of the tumor and high efficacy of the therapy, as was seen in the serum samples in 9 of 10 patients.

In contrast, constantly high concentrations of nucleosomes during therapy and a late decline are explained by extended tumor volume and a high proliferation rate of the tumor. Additionally, in the periods between the applications of radiotherapy, new sub-populations of tumor cells are primed to become apoptosis sensitive, as reported by Thames et al.60 and Meyn et al.61 This combination leads to high cell death rates during the following therapeutic fractions and to prolonged high levels of the measured nucleosomes in the circulation. Therefore, higher minimum levels of nucleosomes may be explained by high activity of tumors associated with inefficient therapy.

The spontaneous and radiation-induced apoptotic rate might have prognostic relevance. Although the data of our kinetic investigations are based on a small number of patients, they indicate a correlation of the spontaneous pre-therapeutic concentration of nucleosomes in serum and the radiation-induced maximum value determined after the first fraction of radiotherapy. However, nei-
ther the spontaneous nor the radiation-induced level of nucleosomes correlated with the clinical outcome of the patient.

CONCLUSION

The modified version of the Cell Death Detection™ ELISA offers the possibility to measure quickly and quantitatively the concentration of nucleosomes in serum. High amounts of nucleosomes indicate the presence of disease, whether benign or malignant cannot be distinguished.

The course of the concentration of nucleosomes in serum might be useful for therapeutic monitoring of patients with malignant tumors during chemotherapy or radiotherapy. During chemotherapy, an increase in baseline values of circulating nucleosomes indicates disease progression, which would lead to a change in therapeutic regimen. Decrease of the baseline values is an indicator of disease regression. During radiotherapy, an early decrease of the concentration of nucleosomes to low minimum levels indicates a good sensitivity to irradiation, whereas a late decrease to higher minimum levels is associated with less radiosensitivity. These results suggest that the measurement of the concentration of nucleosomes in serum is a useful tool to estimate the efficacy of radiotherapy.

Further prospective studies with more patients defined tumor entities and therapeutic regimens are necessary to validate our preliminary results of the concentration of nucleosomes in serum during chemotherapy or radiotherapy.

REFERENCES

46. Jen J, Wu L, Sidransky D. An overview on the isolation and analysis of nucleosomes in serum. NUCLEOSOMES IN SERUM 119